Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 276, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481158

RESUMO

BACKGROUND: Plant diseases caused by pathogenic fungi are devastating. However, commonly used fungicides are harmful to the environment, and some are becoming ineffective due to fungal resistance. Therefore, eco-friendly biological methods to control pathogenic fungi are urgently needed. RESULTS: In this study, a strain, Paenibacillus sp. lzh-N1, that could inhibit the growth of the pathogenic fungus Mycosphaerella sentina (Fr) Schrorter was isolated from the rhizosphere soil of pear trees, and the complete genome sequence of the strain was obtained, annotated, and analyzed to reveal the genetic foundation of its antagonistic ability. The entire genome of this strain contained a circular chromosome of 5,641,488 bp with a GC content of 45.50%. The results of species identification show that the strain belongs to the same species as P. polymyxa Sb3-1 and P. polymyxa CJX518. Sixteen secondary metabolic biosynthetic gene clusters were predicted by antiSMASH, including those of the antifungal peptides fusaricidin B and paenilarvins. In addition, biofilm formation-related genes containing two potential gene clusters for cyclic lactone autoinducer, a gene encoding S-ribosylhomocysteine lyase (LuxS), and three genes encoding exopolysaccharide biosynthesis protein were identified. CONCLUSIONS: Antifungal peptides and glucanase biosynthesized by Paenibacillus sp. lzh-N1 may be responsible for its antagonistic effect. Moreover, quorum sensing systems may influence the biocontrol activity of this strain directly or indirectly.


Assuntos
Paenibacillus , Paenibacillus/genética , Antifúngicos/química , Percepção de Quorum , Genoma Bacteriano
2.
Front Microbiol ; 12: 814929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154040

RESUMO

Cyanobacterial blooming is an increasing environmental issue all over the world. Algicidal bacteria are potential tools for the control of algal blooms. The algicidal activity in many bacteria exhibits quorum-sensing (QS) dynamics and the regulatory mechanism of this activity in these bacteria is unclear. In this study, combining genomic sequencing and genome editing, we have identified that the primary quorum-sensing system in the isolated algicidal strain Shewanella xiamenensis Lzh-2 is the LuxS/AI-2 signaling pathway. Disruption of the QS system through recombination deletion of the LuxS gene led to a loss of algicides production and algicidal activity. Restoration of the LuxS gene in the deletion mutant compensated the QS system and recovered the algicidal activity. Consequently, we proved that Lzh-2 regulates the algicidal activity through LuxS/AI-2 quorum-sensing system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...